286 research outputs found

    Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau

    Get PDF
    In this study, we investigate the characteristics of atmospheric parameters before, during, and after rain events in Bern, Switzerland. Ground-based microwave radiometer data of the TROpospheric WAter RAdiometer (TROWARA) with a time resolution of 7 s, observations of a weather station, and the composite analysis method are used to derive the temporal evolution of rain events and to identify possible rainfall precursors during a 10-year period (1199 available rain events). A rainfall climatology is developed using parameters integrated water vapor (IWV), integrated liquid water (ILW), rain rate, infrared brightness temperature (TIR), temperature, pressure, relative humidity, wind speed, and air density. It was found that the IWV is reduced by about 2.2 mm at the end of rain compared to the beginning. IWV and TIR rapidly increase to a peak at the onset of the rainfall. Precursors of rainfall are that the temperature reaches its maximum around 30 to 60 min before rain, while the pressure and relative humidity are minimal. IWV fluctuates the most before rain (obtained with a 10 min bandpass). In 60% of rain events, the air density decreases 2 to 6 h before the onset of rain. The seasonality and the duration of rain events as well as the diurnal cycle of atmospheric parameters are also considered. Thus, a prediction of rainfall is possible with a true detection rate of 60% by using the air density as a precursor. Further improvements in the nowcasting of rainfall are possible by using a combination of various atmospheric parameters which are monitored by a weather station and a ground-based microwave radiometer

    Observation of an Extremely Dry Atmospheric Air Column above Bern

    Get PDF
    The water vapour column density or vertically integrated water vapour (IWV) ranges from about 8 mm in winter to about 25 mm in summer in Bern, Switzerland. However, there can be day episodes when IWV drops to 2 mm or even less so that the atmosphere is extremely dry. We selected an event in February 2021 when the tropospheric water radiometer TROWARA measured a mean IWV value of about 1.5 ± 0.2 mm for a time interval of about one day in Bern. The ECMWF reanalysis ERA5 indicated a slightly higher IWV value of about 2.2 ± 0.4 mm where the uncertainty is the standard deviation of IWV during the time of IWV depression. The ERA5 profiles of relative humidity and specific humidity during this episode are reduced by 50% and more compared to the monthly mean profiles. On a global map, it can be seen that Bern is within a mesoscale dry region on that day with descending wind. Back trajectory analysis gives the result that the dry air masses in Bern came from the North and the trajectories are descending in altitude so that dry air from the mid troposphere came into the lower troposphere. These descending air masses from the North explain the minimum of IWV observed in Bern on 13–14 February 2021. The surface climate in Switzerland was dominated by a cold wave at that time. At the same time, severe cold waves occurred in Greece and Northern America

    Integrated Water Vapor during Rain and Rain-Free Conditions above the Swiss Plateau

    Get PDF
    Water vapor column density, or vertically-integrated water vapor (IWV), is monitored by ground-based microwave radiometers (MWR) and ground-based receivers of the Global Navigation Satellite System (GNSS). For rain periods, the retrieval of IWV from GNSS Zenith Wet Delay (ZWD) neglects the atmospheric propagation delay of the GNSS signal by rain droplets. Similarly, it is difficult for ground-based dual-frequency single-polarisation microwave radiometers to separate the microwave emission of water vapor and cloud droplets from the rather strong microwave emission of rain. For ground-based microwave radiometry at Bern (Switzerland), we take the approach that IWV during rain is derived from linearly interpolated opacities before and after the rain period. The intermittent rain periods often appear as spikes in the time series of integrated liquid water (ILW) and are indicated by ILW ≥ 0.4 mm. In the present study, we assume that IWV measurements from radiosondes are not affected by rain. We intercompare the climatologies of IWV(rain), IWV(no rain), and IWV(all) obtained by radiosonde, ground-based GNSS atmosphere sounding, ground-based MWR, and ECMWF reanalysis (ERA5) at Payerne and Bern in Switzerland. In all seasons, IWV(rain) is 3.75 to 5.94 mm greater than IWV(no rain). The mean IWV differences between GNSS and radiosonde at Payerne are less than 0.26 mm. The datasets at Payerne show a better agreement than the datasets at Bern. However, the MWR at Bern agrees with the radiosonde at Payerne within 0.41 mm for IWV(rain) and 0.02 mm for IWV(no rain). Using the GNSS and rain gauge measurements at Payerne, we find that IWV(rain) increases with increase of the precipitation rate during summer as well as during winter. IWV(rain) above the Swiss Plateau is quite well estimated by GNSS and MWR though the standard retrievals are limited or hampered during rain periods

    Propagation and Pitfalls: Reasoning-based Assessment of Knowledge Editing through Counterfactual Tasks

    Full text link
    Current approaches of knowledge editing struggle to effectively propagate updates to interconnected facts. In this work, we delve into the barriers that hinder the appropriate propagation of updated knowledge within these models for accurate reasoning. To support our analysis, we introduce a novel reasoning-based benchmark -- ReCoE (Reasoning-based Counterfactual Editing dataset) -- which covers six common reasoning schemes in real world. We conduct a thorough analysis of existing knowledge editing techniques, including input augmentation, finetuning, and locate-and-edit. We found that all model editing methods show notably low performance on this dataset, especially in certain reasoning schemes. Our analysis over the chain-of-thought generation of edited models further uncover key reasons behind the inadequacy of existing knowledge editing methods from a reasoning standpoint, involving aspects on fact-wise editing, fact recall ability, and coherence in generation. We will make our benchmark publicly available.Comment: 22 pages, 14 figures, 5 table

    Research Progress on the Mechanism and Regulation of Enzymatic Browning in Peach Fruit

    Get PDF
    Peaches are an ancient fruit in China, with great nutritional and commercial value. Peach fruit is a typical respiratory climacteric fruit, which is prone to browning within a short period of time after harvesting, and rapid browning and high browning degree occur during peach processing, which are difficult to control, affecting the quality and economic value of the fruit. At present, systematic research on the characteristics and mechanism of peach browning is lacking, as well as effective control techniques and methods. In this paper, the current status of research on the characteristics and mechanism of and the key factors for enzymatic browning in peach fruit is reviewed, and the techniques used for its control are summarized, aiming to provide a reference for the regulation of enzymatic browning during peach storage and processing and consequently to promote the quality improvement of fresh and processed peach products

    An Indoor Microwave Radiometer for Measurement of Tropospheric Water

    Get PDF
    This article presents the first detailed description of the innovative measurement setup of an indoor tropospheric microwave radiometer [TROpospheric WAter RAdiometer (TROWARA)] that avoids water films on radome. We discuss the performance of a commercial outdoor microwave radiometer [Humidity And Temperature PROfiler radiometer (HATPRO)] for measuring tropospheric water parameters in Bern, Switzerland. The HATPRO is less than 20 m from the TROWARA and has different instrument characteristics. Brightness temperatures measured by HATPRO are analyzed by comparing them with coincident measurements from TROWARA and Radiative Transfer Simulations based on the [European Centre for Medium-Range Weather Forecasts (ECMWF)] operational analysis data (denoted as RTSE). To find the source of brightness temperature bias, a gradient boosting decision tree is used to analyze the sensitivity of eight feature factors to bias. Data processing routines of the two radiometers use different algorithms to retrieve integrated water vapor (IWV) and integrated cloud liquid water (ILW), whereas the same physical algorithms based on the radiative transfer equation are applied to obtain the opacity and rain rate. Using 62 days of data with varied weather conditions, it was found that TROWARA brightness temperatures are in good agreement with RTSE. HATPRO brightness temperatures are significantly overestimated by about 5 K at 22 GHz, compared to TROWARA and RTSE. HATPRO brightness temperatures at 31 GHz agree well with TROWARA and RTSE (within about ±1 K). The overestimated brightness temperatures in the K-band and the HATPRO retrieval algorithm lead to an overestimation of IWV and ILW by HATPRO. The opacities at 31 GHz match very well for TROWARA and HATPRO during no rain with a verified R2of 0.96. However, liquid water floating or remaining water films on the radome of the outdoor HATPRO radiometer induce an overestimation of the rain rate. The physical reason for the overestimated 22-GHz brightness temperatures of the HATPRO is mainly the result of the combined effect of instrument calibration, the surrounding environment of the instrument, and the Sun elevation angle. This can be a problem with the Generation 2 HATPRO radiometer and this problem was resolved in the Generation 5 HATPRO radiometer

    Fast Start-Up Microfluidic Microbial Fuel Cells With Serpentine Microchannel

    Get PDF
    Microfluidic microbial fuel cells (MMFCs) are promising green power sources for future ultra-small electronic devices. The MMFCs with co-laminar microfluidic structure are superior to other MMFCs according to their low internal resistance and relative high power density. However, the area for interfacial electron transfer between the bacteria and the anode is quite limited in the typical Y-shaped device, which apparently restricts the current generation performance. In this study, we developed a membraneless MMFC with serpentine microchannel to enhance the interfacial electron transfer and promote the power generation of the device. Owing to the merit of laminar flow, the proposed MMFC was working well without any proton exchange membrane (PEM). At the same time, the serpentine microchannel greatly increased the power density. The S-MMFC catalyzed by Shewanella putrefaciens CN32 achieves a peak power density of 360 mW/m2 with the optimal channel configuration and the flow rate of 5 ml/h. Meanwhile, this device possesses much shorter start-up time and much longer duration time at high current plateau than the previous reported MMFCs. The presented MMFC appears promising for biochip technology and extends the scope of microfluidic energy

    Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism

    Get PDF
    Fungal infections caused by Candida albicans and non-albicans Candida [NAC] species are becoming a growing threat in immunodeficient population, people with long-term antibiotic treatment and patients enduring kinds of catheter intervention. The resistance to one or more than one conventional antifungal agents contributes greatly to the widespread propagation of Candida infections. The severity of fungal infection requires the discovery of novel antimycotics and the extensive application of combination strategy. In this study, a group of Candida standard and clinical strains including C. albicans as well as several NAC species were employed to evaluate the antifungal potentials of palmatine (PAL) alone and in combination with fluconazole (FLC)/itraconazole (ITR) by microdilution method, checkerboard assay, gram staining, spot assay, and rhodamine 6G efflux test. Subsequently, the expressions of transporter-related genes, namely CDR1, CDR2, MDR1, and FLU1 for C. albicans, CDR1 and MDR1 for Candida tropicalis and Candida parapsilosis, ABC1 and ABC2 for Candida krusei, CDR1, CDR2, and SNQ2 for Candida glabrata were analyzed by qRT-PCR. The susceptibility test showed that PAL presented strong synergism with FLC and ITR with fractional inhibitory concentration index (FICI) in a range of 0.0049–0.75 for PAL+FLC and 0.0059–0.3125 for PAL+ITR in planktonic cells, 0.125–0.375 for PAL+FLC and 0.0938–0.3125 for PAL+ITR in biofilms. The susceptibility results were also confirmed by gram staining and spot assay. After combinations, a vast quantity of rhodamine 6G could not be pumped out as considerably intracellular red fluorescence was accumulated. Meanwhile, the expressions of efflux-associated genes were evaluated and presented varying degrees of inhibition. These results indicated that PAL was a decent antifungal synergist to promote the antifungal efficacy of azoles (such as FLC and ITR), and the underlying antifungal mechanism might be linked with the inhibition of efflux pumps and the elevation of intracellular drug content
    • …
    corecore